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Neuroimaging  data  are  high  dimensional  and  thus  cumbersome  to  analyze.  Manifold  learning  is a  tech-
nique to  find  a low  dimensional  representation  for high  dimensional  data. With  manifold  learning,  data
analysis  becomes  more  tractable  in  the low  dimensional  space.  We  propose  a novel shape  quantification
method  based  on  a manifold  learning  method,  ISOMAP,  for brain  MRI.  Existing  work  applied  another
manifold  learning  method,  multidimensional  scaling  (MDS),  to quantify  shape  information  for distin-
anifold embedding
SOMAP
lzheimer’s disease
ild cognitive impairment

hape quantification
orphometry

guishing  Alzheimer’s  disease  (AD)  from  normal.  We  enhance  the  existing  methodology  by (1)  applying
it to  distinguish  mild  cognitive  impairment  (MCI)  from  normal,  (2)  adopting  a  more  advanced  manifold
learning  technique,  ISOMAP,  and  (3)  showing  the  effectiveness  of  the  induced  low  dimensional  embed-
ding  space  to  predict  key  clinical  variables  such  as mini  mental  state  exam  scores  and  clinical  diagnosis
using  the  standard  multiple  linear  regression.  Our  methodology  was tested  using  25  normal,  25  AD,  and
25  MCI  patients.
ntroduction

Many neurodegenerative diseases cause unique morphological
hanges in brain anatomy. Only certain structures of the brain are
electively affected by the diseases, while the rest of the brain
emains the same. Alzheimer’s disease (AD) is known to cause
trophy in the hippocampus region. Computational anatomy (CA)
s a research field which applies a computer algorithm to quan-
ify such changes in shape information [8].  The task of measuring
hape is not simple and has been a matter of significant controversy
2,4]. There are two main approaches for measuring shape. The first
pproach, deformation based morphometry (DBM), assumes that
ll shape information is encoded in the deformation fields, which
elates one brain scan with another scan [3].  The second approach,
oxel based morphometry (VBM), assumes that all shape informa-
ion is encoded in some scalar function of the registered scans [1].
wo scans are segmented and then linearly registered so that both
cans are in the same spatial coordinates in the VBM approach.
hape information is assessed by voxel-wise difference in the labels

fter registration. DBM uses deformation fields obtained from reg-
strations of a population and identifies differences in the relative
ositions of structures within the region of interest (ROI). One

∗ Tel.: +82 32 820 4432; fax: +82 32 820 4059.
E-mail address: hyunjinp@gachon.ac.kr

1 Data used in the preparation of this article were obtained from the Alzheimer’s
isease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI).
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major weakness of DBM is that it requires a very accurate regis-
tration algorithm for computation of the displacement field. We
adopt the DBM approach and assume all the necessary shape infor-
mation is given by the displacement fields. This study focuses on
AD and mild cognitive impairment (MCI). Many patients with MCI
often convert to AD later in the disease progression. MCI  has been
extensively studied as detection of MCI  is highly related to early
diagnosis of AD. We  apply a computer algorithm to measure shape
differences so that AD or MCI  patients may  be distinguished from
normal patients. The shape information is computed from the dis-
placement field and the displacement field is burdened with high
dimensionality. The dimension of a displacement field is as high
as the number of voxels of the given scan, which may  number in
the millions. Many displacement fields must be considered when
studying a population. Hence, the dimension of the overall data
is quite large. One way to ease the burden of high dimension-
ality is to apply manifold learning techniques. Manifold learning
is a technique used for finding a low dimensional representa-
tion for high dimensional data [10]. Researchers applied manifold
learning methods to neuroimaging data in order to effectively rep-
resent shape information in a low dimensional embedding space
[7].

Park et al. [12] applied multidimensional scaling (MDS) com-
bined with bending energy of the displacement field to discriminate

shape information between AD from normal controls [12]. Their
approach reported effective separation of AD from normal controls
and showed robustness to errors in displacement fields improv-
ing the major weakness with DBM based shape quantification. We

dx.doi.org/10.1016/j.neulet.2012.02.016
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xtended Park et al. [12] to include MCI  patients in this study.
ere we adopted a more advanced manifold learning technique
alled ISOMAP instead of MDS. Shape information lies with non-
uclidean Riemannian space and the induced distance is known
o be geodesic. ISOMAP better represents geodesic distances and
ence is better suited for studying shape information. In the pre-
ious study, the induced low dimensional embedding space was
sed as a feature space for a kNN classifier to distinguish between
D and normal. We used the low dimensional embedding space
s a feature space to perform classical statistical tests for clinical
ariables, including score of mini mental state exam (MMSE) and
linical diagnosis. Using multiple linear regression, we performed
tatistical testing in order to determine how well the low dimen-
ional embedding space was  able to predict MMSE  score and clinical
iagnosis. Support vector machine (SVM) classifier combined with
dvanced feature selection has been successfully applied to classify
ormal and AD for PET, resulting up to 90% classification accuracy
11]. The SVM based method is one of the state of the art methods
or classifying AD and normal. We  compared the performance of the

ethod in this study with that of SVM based method in the results
ection. In summary, this study builds on the work of Park et al. [12]
nd we extended the methodology by (1) testing its applicability
o MCI  patients, (2) adopting a more advanced manifold learning
echnique, and (3) testing the effectiveness of the low dimensional
mbedding space as a platform to carry out statistical tests for key
linical variables.

aterials and methods

Our shape quantification methodology is very similar to the pre-
ious work [12]. Here we briefly describe the overall framework
mphasizing the differences.

egistration framework

Registration is a task of finding the geometric mapping between
wo images, so that one image can be mapped onto the other. This
tudy used mutual information (MI) as the similarity measure and
hin-plate splines (TPS) as the geometric interpolant [9]. There are

any definitions of MI  and we adopt the metric MI  in the equation
elow.

I(X, Y) = H(X|Y) + H(Y |X) (1)

here X is the intensity distribution of scan X, Y is the intensity
istribution of scan Y, H(X|Y) is the conditional entropy of X given
, and H(Y|X) is the conditional entropy of Y given X. This particu-

ar variant of MI  satisfies the metric property including symmetry
nd triangular inequality. Many manifold learning techniques work
est with metric distance measures.

istance measure

Registration between two scans yields a geometric transform
ptimized for maximization of a certain cost function. The displace-
ent field is a collection of evaluations of the geometric transform

t all voxel locations. The entire deformation field, whose order is
qual to the number of voxels, is compressed to a single scalar value.
he scalar value is the geometric distance, hereafter called dis-
ance, which measures the roughness of the geometric transform
hat associates the coordinate spaces of two scans. If the geomet-
ic transform is complex between two images, then the distance

easure will be high. If the geometric transform is simple, then

he distance measure will be small. We  adopted the integral of
he squared value of the second-order derivative of the geomet-
ic transform as the distance measure. We  chose the second-order
s 513 (2012) 141– 145

derivative in order to ensure invariance to affine transforms. The
formulation for the distance measure is given below.

d2 =
∫ ∫ (

∂2fx
∂x2

)2

+ 2

(
∂2fx
∂x∂y

)2

+
(

∂2fx
∂y2

)2

dxdy

+
∫ ∫ (

∂2fy
∂x2

)2

+ 2

(
∂2fy
∂x∂y

)2

+
(

∂2fy
∂y2

)2

dxdy (2)

where fx displacement in x and fy displacement in y.
Formulation in (2) is for 2D and can be easily extended for 3D.

This distance is called the bending energy. The proposed distance
measure is based on the displacement field. Others adopted a dis-
tance measure based on grayscale information of the registered
scans [14]. If two  scans can be registered with a high MI  value, it
is likely that two scans are similar hence the distance between the
two should be small. Thus, the inverse of MI  (i.e., 1/MI) may be used
as a distance measure. We compared our distance measure based
on the displacement field (i.e., bending energy) with the distance
measure based on grayscale values (i.e., metric MI)  in the results
section.

ISOMAP

ISOMAP is a manifold learning technique based on pair-wise
distances derived from high dimensional data [13]. Compared to
traditional manifold learning methods such as MDS, it approxi-
mates the geodesic distances using weighted neighborhood graphs.
Shape information occupies non-Euclidean Riemannian space and
the induced distance is geodesic, thus ISOMAP is well equipped to
deal with shape information. Given a set of distances in the distance
matrix D, ISOMAP outputs a set of coordinates in a user-specified
dimension. The dimension of ISOMAP output is determined based
on the eigenstructure of the distance matrix. The output coor-
dinates are in the standard Euclidean space of the user-chosen
dimension. ISOMAP considers only distance measures from nearby
objects and approximates large distances from distant objects by
composition of small scale distances. It basically trusts only small
distance values and approximates the large distance values using
composition of small distances. For scans that are relatively similar
and thus easy to register, the resulting bending energy is likely to
be small and ISOMAP places high confidence on such distances.
For scans that are vastly different and thus difficult to register,
the resulting bending energy is likely to be large and ISOMAP
does not trust such large bending energy values. Instead, ISOMAP
approximates the difficult registration between two vastly differ-
ent scans by composition of small scale and easy to do registration
tasks.

Framework for shape quantification

ISOMAP produces relative positional locations from a collection
of pair-wise distances, which in turn assigns a low dimensional
coordinate for each MRI  scan. The key idea is to use a distance mea-
sure that quantifies distances between MRI  scans. We  adopted a
distance measure called bending energy, which is based on the dis-
placement field. Output of ISOMAP is often visualized on a scatter
plot, where each dot represents a scan. In the scatter plot, the rel-
ative positions of all scans are plotted in the Euclidean space of
a user-chosen dimension. We  hypothesize that scans of the same
type will be placed adjacent and scans of different types will be
placed separately. Therefore, we  expect a scatter plot in which two

distinct clusters can be observed. The low dimensional embed-
ding space (i.e., ISOMAP output coordinates) may  be used as a
feature space for quantification of shape information. In this study,
the ISOMAP embedding space was  used as the feature space for
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Fig. 2. Output of ISOMAP. The top figure shows separability between AD and nor-
mal, while the bottom figure shows separability between MCI  and normal. Major
Fig. 1. Shape quantification procedures using ISOMAP for N scans.

1) automatic classification of diagnostic groups, and (2) for per-
orming multiple linear regression for MMSE  scores and clinical
iagnosis. Fig. 1 shows the shape quantification procedure for N
cans.

ata acquisition

We  obtained MRI  image data and MMSE  scores from the ADNI
atabase. Data used in the preparation of this study were obtained
rom the ADNI database (www.loni.ucla.edu/ADNI). We  acquired
5 MRI  brain scans and noted the MMSE  score for each patient. 25
D scans aged between 66 and 82 and consisted of 12 males and
3 females. 25 MCI  scans aged between 60 and 90 and consisted of
4 males and 11 females. 25 normal scans aged between 71 and 90
nd consisted of 14 males and 11 females. All MRIs were sagittal T1-
eighted scans and had typical dimensions of 256 × 256 × 166 and

esolutions of 0.94 mm  × 0.94 mm × 1.2 mm.  The scans were col-
ected using a 1.5 T GE Signa scanner with an MR-RAGE acquisition
equence.

ata pre-processing

Non-brain tissue sections were removed using a procedure sim-
lar to “skull stripping”. We  implemented our own algorithm based
n registration. First, registration between the labeled International
onsortium for Brain Mapping (ICBM) scan and the user-chosen
can was established. Second, labels from the ICBM scan were car-
ied onto the user scan and then used as a mask. Masked voxels
ontained only brain tissues, including white matter, gray matter,

nd cerebral spinal fluid (CSF). With this mask, the user-chosen
can could be stripped of non-brain tissues. After removal of all
cans of non-brain tissues, pair-wise registrations using 50 con-
rol points were performed. The 50 control points were distributed
lmost uniformly over the entire brain.
separation occurred along the first dimension (horizontal axis) for AD/Normal and
MCI/Normal. The figures show the first two dimensions out of the three-dimensional
ISOMAP coordinates.

Experimental setup

ISOMAP based shape quantification was applied to the following
three scenarios where each contained two  groups for comparison:
(1) normal control and AD, (2) normal control and MCI, and (3) AD
and MCI. For each scenario, there were 50 brain MRI  scans involved;
thus, a total of 50 choose 2 (i.e., 1225) pair-wise registrations were
performed and the resulting bending energies were entered into
the 50 × 50 distance matrix. Once the distance matrix was  com-
puted, ISOMAP was applied with 29 nearest neighbor setting and
the results were analyzed in three dimensions. The dimension
of ISOMAP was chosen based on the eigenvalues of the distance
matrix. We  chose the number L as the dimension, such that after
L largest eigenvalues, the next occurring eigenvalue dropped dra-
matically.

Results

Separability between clusters
Fig. 2 shows a scatter plot of ISOMAP output for distinguishing
(1) normal control and AD (Fig. 2a), and (2) normal control and MCI
(Fig. 2b). Both scenarios showed clear separation between clusters

http://www.loni.ucla.edu/ADNI
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Table 1
p-Values for separation of clusters using different distance measures.

Clusters being compared Distance measure

Bending energy Metric MI

AD/Normal 0.003 0.538
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MCI/Normal 0.006 0.362
AD/MCI 0.161 0.625

eing compared. For separation of AD and normal, the separation
as evident along the horizontal dimension and for separation of
CI  and normal, the separation was also observed along the hori-

ontal dimension. To quantify separability between clusters being
ompared, a two-sample T-test was applied to the first coordinate
imension (i.e., horizontal dimension). The p-value of AD/Normal
as small, which showed that AD and normal control can be eas-

ly distinguished. The p-value of MCI/Normal was  still small (i.e.,
.006 < 0.05), but was larger than the case of AD/Normal, which
howed that MCI  and normal can be distinguished at the 0.05 level;
owever, they were not as easily distinguishable as the AD/Normal
ase. The p-value of MCI/AD was large; thus, they were not distin-
uishable at the 0.05 level.

omparison of bending energy and MI  as the distance measure

We compared the performance of ISOMAP based shape quantifi-
ation using bending energy as the distance measure with that of
etric MI  as the distance measure. p-Values of two-sample T-tests

o quantify the separability between clusters being were compared
n Table 1. The p-values of all three scenarios using metric MI  as the
istance measure were larger than those using bending energy and
ll were greater than 0.05. Using metric MI  as the distance mea-
ure did not provide enough sensitivity to distinguish the following
hree comparison groups, AD/Normal, MCI/Normal, and AD/MCI. MI
s computed from a joint grayscale distribution of registered scans.
patial information is removed when the joint distribution is com-
uted. Loss of spatial information during the construction of the

oint distribution may  negatively affect the sensitivity of metric MI
s the distance measure.

lassification using a kNN classifier

Here we used the embedding space as a feature space for auto-
atic classification. We  applied a well-known k-nearest neighbor

kNN) classifier, where k was set to three. A leave-one-out approach
as adopted when computing the classification performance. For

ach case being tested, we trained the classifier using the remaining
9 cases and then computed the classification performance for
he test case. The process was repeated for all 50 MRI  scans of
ach scenario and the classification rate is reported in Table 2. For

omparison, we implemented a classification algorithm based on
ippocampus volume. AD and MCI  patients were reported to have

 smaller hippocampus, compared with the normal control; thus,

able 2
lassification rates of various classifiers.

Classifier type Clusters

AD/Normal MCI/Normal AD/MCI

kNN (k = 3) using ISOMAP
embedding

84% 76% 56%

kNN (k = 3) using
Hippocampus volume

76% 60% 54%

SVM using a linear kernel
with dimensionality
reduced features

76% 75% 70%
s 513 (2012) 141– 145

hippocampus volume has been used as a feature of a classifier in
order to distinguish AD/Normal and MCI/Normal [6].  Since man-
ual segmentation of the hippocampus for 75 scans would be very
laborious, we  used the well-known FSL software to achieve auto-
matic segmentation of the hippocampus and computed its volume.
We used the same kNN classifier and leave-one-out approach; the
classification rate is reported in Table 2. From Table 2, classifica-
tion rates were better with our ISOMAP embedding based kNN
classifier for differentiation of AD/Normal and MCI/Normal groups,
compared to the hippocampus volume based classifier. For differ-
entiation of AD/MCI, neither was  very good, as both were barely
better than randomly flipping a coin (i.e., 50%). Existing automatic
classification studies [5] tested on the same ADNI database reported
a classification rate of 76% for distinguishing AD/Normal and 71%
for distinguishing MCI/Normal; thus, our results showed better per-
formance compared to existing research.

Comparison with an SVM classifier

The performance of the proposed kNN classifier was compared
to that of the state of the art SVM based classifier in Table 2 [11].
The same leave-one-out approach was adopted. For the SVM based
method, the high dimensionality of the observed features was
reduced using principal component analysis (PCA) and linear dis-
criminant analysis (LDA). The reduced features were then fed into
the SVM classifier using a linear kernel. We applied the algorithm
of [11] to a set of anatomical MRI  instead of PET. This is because
the focus of this paper is to see if we can distinguish AD/MCI from
normal patients based on the feature space induced by a manifold
learning method using only anatomical MRI. For classifying AD and
normal, our method fared better. For classifying MCI  and normal,
both methods reported similar performance. For classifying AD and
MCI, SVM based method was  better. The proposed method per-
formed equally or better than the SVM based method for two cases
out of the three. The proposed method is based on a simple kNN
classifier, if combined with an advanced classifier including SVM,
it has an excellent potential to perform better and we leave this as
future work. The focus of this paper is to show the usefulness of the
induced space and we believe using a simple kNN classifier serves
such purpose. The proposed method follows the assumptions of
DBM, while the SVM based method follows the assumption of VBM
as the features were obtained from voxel values in the SVM based
method. For researchers not subscribing to VBM assumptions, the
proposed method can be a useful alternative to classify between
AD and normal with “on par” performance compared to the state
of the art SVM based methods.

Low dimensional embedding space and statistical tests

In neuroimaging analysis, the most commonly performed sta-
tistical test is the comparison of two  groups using a simple T-test.
A simple T-test compares one-dimensional observations, while
ISOMAP embedding space could be multi-dimensional (e.g., three
dimensional coordinates). Note that dimensionality of embedding
space is typically small (e.g., typically lower than five). Multiple
linear regression is a framework for full incorporation of multi-
dimensionality of the embedding space. Using multiple linear
regression, we  tested how well the low dimensional embedding
space of ISOMAP (i.e., coordinates in the scatter plot) was able to
predict MMSE  score and clinical diagnosis for the three scenar-
ios (Table 3). If AD/Normal groups were considered, both MMSE
scores and diagnosis could be well predicted by linear regres-

sion witnessed by large F-statistics and low p-value. The statistical
strength weakened when the MCI/Normal group was considered, as
F-statistics decreased and p-value increased. Neither MMSE score
nor diagnosis could be meaningfully predicted from the MCI/AD
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Table 3
Multiple linear regression models for MMSE  and diagnosis (ε = 10−8).

Clinical variable Groups being compared R2 statistics F-Statistics p-Value

AD/Normal 0.465 13.306 <ε
MMSE  scores MCI/Normal 0.056 0.906 0.446

AD/MCI 0.046 0.740 0.533
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a  feasibility study, J. Neurosci. Methods 194 (2011) 380–385.
[13] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
AD/Normal 

Diagnosis (AD/MCI/Normal) MCI/Normal 

AD/MCI 

roup. The most separable group (i.e., AD/Normal) would have the
aximum statistical power to predict clinical variables, while the

east separable group (i.e., AD/MCI) would be least able to predict
he clinical variables. Compared with the recent study [7],  use of
ur method resulted in similar performance in terms of F-statistics
nd p-value.

iscussion

Neuroimaging data are almost always high dimensional and
pplication of statistical tests on high dimensional data is prone
o noise. Applying manifold learning results in a low dimensional
mbedding space to analyze shape information. Statistical test
esults performed in a low dimensional space are more robust than
hose performed in a high dimensional space due to the reduced
imensionality. The clinically important issue is early detection of
D. A patient might undergo an MRI  scan every 6 months, and we
ould like to predict the onset of AD before the actual conversion

rom normal to AD occurs. This scenario will lead to time-series
nalysis. We  described a framework for quantification of group-
ise differences and we did not consider time series data in this

tudy. The same ISOMAP induced low dimensional space may  still
erve as a good platform for time-series analysis and we leave this
mportant problem as future work.
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